目前的关联规则挖掘算法主要依靠基于支持度的剪切策略来减小组合搜索空间.如果挖掘潜在的令人感兴趣的低支持度模式,这种策略并非有效.为此,提出一种新的关联模式—可信关联规则(credible association rule,简称CAR),规则中每个项目的支持度处于同一数量级,规则的置信度直接反映其可信程度,从而可以不必再考虑传统的支持度.同时,提出MaxcliqueMining算法,该算法采用邻接矩阵产生2-项可信集,进而利用极大团思想产生所有可信关联规则提出并证明了几个相关命题以说明这种规则的特点及算法的可行性和有效性.在告警数据集及Pumsb数据集上的实验表明,该算法挖掘CAR具有较高的效率和准确性.
提出了一种新的人脸识别算法。该算法采用Gabor小波和一种新颖的方式来提取人脸特征,利用局部线性嵌入(Locally Linear Embedding,LLE)算法来实现数据的非线性降维处理,最后训练基于欧式距离的最近邻分类器进行分类判决。在ORL人脸库中与PCA方法、Gabor小波+PCA方法和直接的LLE算法进行了实验比较,实验结果表明,提出的Gabor小波+LLE的方法具有更优的性能。