The bulk peanuts were used as the materials. After ),-ray irradiation of different doses, the peanuts were stored up at room temperature, and the degree of pest infection and gradient of mould infection were observed regularly. The results showed that insects began to appear in the unirradiated peanuts in 2 months, while after 4 months, the pest infection rate increased with the prolonged storage time, and the pest infection rate reached up to 58%-100% after 6 months of storage. However, the irradiated peanuts did not suffer from the pest infection throughout the storage. The unirradiated peanuts were contaminated by moulds after three months of storage, while the peanuts with an irradiation dose of 0.3-0.5 kGy were mildewed after 6 months of storage, while those with an irradiation dose of 1.0, 4.0 kGy had no mould after 12 months of storage. Combined with relevant international and national standards as well as the findings of scholars at home and abroad, the minimum effective irradiation dose for insect disinfestations of peanuts was 0,3 kGy, and the minimum effective irradiation dose for mildew control was 1.0 kGy, while the maximum tolerance dose was 4.0 kGy.
To investigate the degradation of FB1 in aqueous acetonitrile and corn af-ter γ-ray irradiation, the radiolytic products of FB1 was detected preliminarily. The results showed that γ-ray irradiation could degrade FB1 in aqueous acetonitrile;When the radiation dose was below 9 kGy, the degradation of FB1 in corn was not significant. The degradation rates of FB1 with concentrations of 0.8 mg/ml, 10.0 μg/ml, 1.0 μg/ml and 50 ng/ml after irradiation at 9 kGy were 22.5%, 51.0%, 59.0% and 64.8% respectively; when irradiation dose was increased to 100 kGy, the degrada-tion rate of FB1 with concentration of 0.8 mg/ml was up to 90%, and it was nearly 100% when irradiation dose was increased to 200 kGy. No representative products of FB1 were detected by LC/MS/MS analysis.