The theory for measuring the time constant of thermocouple was introduced, and the method for measuring the time constant of NANMAC thermocouple by using dynamic calibration system of transient surface temperature sensor was proposed. In this system, static and dynamic calibrations were conducted for infrared detectors and thermocouples, and then both temperature-time curves were obtained. Since the frequency response of infrared detector is superior to that of calibrat- ed thermocouple, the values measured by infrared detectors are taken as true values. Through dividing the values measured with thermocouples by those with infrared detectors, a normalized curve was obtained, based on which the time constant of thermocouple was measured. With this method, the experiments were carried out with NANMAC thermocouple to obtain its time constant. The results show that the method for measuring the time constant is feasible and the dynamic calibration of thermocouples can be achieved at microsecond and millisecond level. This research has a certain reference value for research and application of NANMAC thermocouple temperature sensor.
A new distributed test system composed of multiple test nodes was designed by adopting storage test technology to test shock waves in explosion field. The advantage of the system is the application of sensor lattice whose rise time is microsecond level, which can quickly response to transient shock wave signals. In order to reduce dynamic response error, shock tube is employed to conduct dynamic calibration on the system. The overpressure peak values of the explosion shock wave collected by sensor lattice were used to construct a shock wave pressure field with B-spline interpolation algorithm.
A noise reduction method for infrared detector output signal is studied during dynamic calibration of thermocou- pie. Firstly, the deficiency of the classical filter method is analyzed and the application of the wavelet analysis is introduced for signal de-noising during the dynamic testing. Secondly, the theoretical basis of wavelet analysis, the choice of wavelet base and the determination of decomposed series and threshold are analyzed. Finally, the de-noising experiment for infrared detector signal is carried out on the Matlab platform. The results indicate the proposed wavelet de-noising method is effective to remove fixed frequency and high-frequency noise; furthermore, good synchronization is achieved between the de-noised signal and the useful signal components in the original signal, which is of great significance to thermocouple modeling analys- is.