提出了基于局部均值分解(Local mean decomposition,简称LMD)和AR模型相结合的转子系统故障诊断方法.该方法先用LMD方法将转子振动信号分解成若干个瞬时频率具有物理意义的PF(Product function,简称PF)分量之和,然后对每一个PF分量建立AR模型,提取模型参数和残差方差作为故障特征向量,并以此作为神经网络分类器的输入来识别转子的工作状态和故障类型.与EMD方法的对比研究表明,这两种方法均能有效地应用于转子系统的故障诊断.但LMD方法信号分解后数据残差比EMD方法的小.
变量预测模型的模式识别方法(Variable predictive model based class discriminate,VPMCD)是一种利用特征值相互内在关系进行模式识别的新方法。论文提出了基于局部均值分解LMD(Local mean decomposition,LMD)能量矩概念,并针对轴承故障振动信号特征值的相互内在联系,将LMD能量矩与变量预测模型模式识别相结合,提出了一种轴承故障智能诊断新方法。首先利用LMD方法将复杂非平稳的原始信号分解为若干PF(Product function,PF)分量;然后利用相关分析剔除LMD方法中的虚假PF分量,并提取真实PF分量能量矩组成特征向量来有效地表达故障信息;最后采用VPMCD方法进行轴承故障诊断。通过仿真信号验证了PF能量矩比PF能量更能反映非平稳信号本质特征。轴承故障诊断实验结果表明,论文提出的方法能有效地应用于小样本多分类轴承故障智能诊断。
将基于变量预测模型的模式识别(variable predictive model based class discriminate,简称VPMCD)方法、经验模态分解(empirical mode decomposition,简称EMD)方法和奇异值分解(singular value decomposition,简称SVD)相结合,提出了一种基于EMD,SVD和VPMCD的齿轮故障的诊断方法。首先,对齿轮振动信号进行EMD分解,得到若干个IMF(intrinsic mode function,简称IMF)分量;其次,将包含齿轮主要故障信息的前几个IMF分量组成特征向量矩阵,并对其进行SVD分解;最后,将奇异值作为特征向量建立VPMCD多故障分类器,以此来区分齿轮的工作状态和故障类型。将提出的方法应用于齿轮实验数据,分析结果表明,该方法能够实现齿轮故障类型的分类和诊断,是一种有效可行的齿轮故障诊断方法。
针对行星齿轮箱故障信号的调制特点,提出基于自适应最稀疏时频分析(Adaptive and Sparsest TimeFrequency Analysis,ASTFA)和对称差分能量算子(Symmetric Difference Energy Operator,SDEO)相结合的解调方法,用于提取故障信号的瞬时幅值和瞬时频率信息。采用ASTFA方法分解行星齿轮箱故障信号,得到若干个单分量信号,采用SDEO进行解调,得到各单分量信号的瞬时幅值和瞬时频率,并计算得到包络谱。采用该方法分析行星齿轮箱故障仿真信号和故障实际信号,结果表明,该方法能准确地提取故障特征,实现行星齿轮箱故障诊断。