在免疫多目标优化算法的基础上,引入了分布估计算法(EDA)对进化种群进行建模采样的思想,提出了一种求解复杂多目标优化问题的混合优化算法HIAEDA(hybrid immune algorithm with EDA for multi-objective optimization).HIAEDA的进化过程混合了两种后代产生策略:一种是基于交叉变异的克隆选择算子,用于在父代种群周围进行局部搜索的同时开辟新的搜索区域;另一种是基于EDA的模型采样算子,用于学习多目标优化问题决策变量之间的相关性,提高算法求解复杂多目标优化问题的能力.在分析两种算子搜索行为的基础上,讨论了两者在功能上的互补性,并利用有限马尔可夫链的性质证明了HIAEDA算法的收敛性.对测试函数和实际工程问题的仿真实验结果表明,HIAEDA与NSGAII算法和基于EDA的进化多目标优化算法RM-MEDA相比,在收敛性和多样性方面均表现出明显优势,尤其是对于决策变量之间存在非线性关联的复杂多目标优化问题,优势更为突出.