视频内容自动分析领域中,关键的挑战在于如何识别重要对象和如何建模对象之间的时空关系.本文基于感知概念(Perception Concepts,简称PCs)和有限状态机(Finite State Machines,简称FSMs)提出一种语义内容分析模型自动描述和探测体育视频中有意义的语义内容.根据体育视频中可识别的特征元素,定义PCs来表示视频中重要的语义模式;设计PC-FSM模型来描述PCs间的时空关系;采用一个图匹配方法自动探测视频中的高层语义.本文提出的方法使用户能够根据其自身的兴趣和知识设计体育视频的查询描述,并将语义内容探测问题转换为图匹配问题.实验结果验证了本文提出的方法的有效性.
大规模开放在线课程(MOOC massive open online course)的兴起为传统大学教育带来了巨大的机遇和挑战。本文简要介绍了"中国大学精品资源共享课程"、"上海高校课程资源共享中心"等四个国内主要的MOOC类平台,并初步分析了MOOC对高等教育的可能影响和MOOC在高教应用中的不确定因素。
低信噪比下的去噪一直是一个难题,最近Emir等人提出了independent component analysis(ICA)去噪方法,该方法在光学功能成像中得到了成功应用。但研究发现在极低信噪比,由于观测信号的样本协方差矩阵具有奇异性,这使得ICA去噪算法中的白化处理步骤无法进行。为解决这一问题,本文利用信号子空间的概念,在ICA去噪方法的基础上提出了一种新的基于信号子空间的ICA(ICA based 0n signal subspace;SSICA)去噪方法。仿真表明该方法能在极低信噪比下有效去噪,同时与传统的滤波去噪相比,SSICA去噪方法在去噪的同时还能够成功得将频域重叠的信号正确分离。