A series of carbon nanotubes-supported K-Co-Mo catalysts were prepared by a sol-gel method combined with incipient wetness impregnation. The catalyst structures were characterized by X-ray diffraction, N2 adsorption-desorption, transmission electron microscopy and H2-TPD, and its catalytic performance toward the synthesis of higher alcohols from syngas was investigated. The as-prepared catalyst particles had a low crystallization degree and high dispersion on the outer and inner surface of CNTs. The uniform mesoporous structure of CNTs increased the diffusion rate of reactants and products, thus promoting the reaction conversion. Furthermore, the incorporation of CNTs support led to a high capability of hydrogen absorption and spillover and promoted the formation of alkyl group, which served as the key intermediate for the alcohol formation and carbon chain growth. Benefiting from these characteristics, the CNTs supported Mo-based catalyst showed the excellent catalytic performance for the higher alcohols synthesis as compared to the unsupported catalyst and activated carbon supported catalyst.