Mg-2.2Nd-xSr-0.3Zr alloys (x=0, 0.4 and 0.7, mass fraction, %) were prepared by gravity casting. Solution treatment was conducted on the as-cast alloys to homogenize microstructure, and hot extrusion was subsequently conducted. Microstructure was observed using an optical microscope and a scanning electron microscope. Biocorrosion behaviors of the alloy in simulated body fluid were analyzed by mass loss, hydrogen evolution and Tafel polarization experiments. The results show that the amount of residual eutectic phase of the solution treated alloys increases with increasing Sr addition, and the grains are significantly refined after hot extrusion. The corrosion resistance of the solution treated alloys deteriorates apparently with increasing Sr addition, while the corrosion resistance of the as-extruded alloys is improved with Sr addition. Nevertheless, the biocorrosion behavior of the as-extruded alloys obtained by Tafel polarization shows different trends from those obtained by the other two methods.