为了在多视角聚类过程中同时考虑特征权重和数据高维性问题,提出一种基于特征加权和非负矩阵分解的多视角聚类算法(Multiview Clustering Algorithm based on Feature Weighting and Non-negative Matrix Factorization,FWNMF-MC).FWNMF-MC算法根据每个视角中每个特征在聚类过程中的重要性,自动赋予不同的权值.通过将每个视角空间中的特征矩阵分解为基矩阵与系数矩阵的乘积,将多视角数据从高维空间映射到低维空间.为了有效利用每个视角信息挖掘聚簇结构,最大化每个视角在低维空间的一致性.最后实验结果表明FWNMF-MC算法的聚类效果明显优于已有的4种有代表性的多视角聚类算法.