According to the investigation of sampling area of 6800 m2 on the south slope of Shennongjia Mountain, there were 126 vascular plant species, belonging to 108 genera and 64 families, in the investigated rare plant communities, of which 9 rare plant species were recorded, accounting for 27.3% of the total rare plants. The communities were about 30 m in height and were divided into three layers as tree layer, shrub layer, and herb layer. The flora of the communities had obvious temperate character. Phanerophytes (accounted for 65.9%), Mesophyllous (62.7%), Papyraceous (84.1%), simple leaf (83.3%), un-entire leaf (69.8%) were dominant in life form, leaf size class, leaf texture, leaf form, and leaf margin respectively. According to important value of species, the communities were divided into three types as Davidia involucrata + Litsea pungens community, Cercidiphyllum japanicum + Padus wilsonii community, and Padus wilsonii + Acer mono community. The indexes of species diversity of tree layer had little difference among communities and evenness was high. The results indicated that the communities had complex structure and relative stability.
Due to the importance of riparian zone in maintaining and protecting regional biodiversity, increasingly more ecologists paid their attentions to riparian zone and had been aware of the important effects of riparian zone in basic study and practical management. In this study, 42 sampling belts (10 m?00 m) parallel to the bank of Xiangxi River at different elevations in Shennongjia Area were selected to investigate the riparian vegetation and rare plants. 14 species of rare plants were found distributing in riparian zone, accounting for 42.4% of the total rare plant species in Shennongjia Area. The main distribution range of the 14 rare plant species was the evergreen and deciduous mixed broadleaved forest at elevation of 1200-1800 m, where, species diversity of plant community was the maximum at the moderate elevation. The analysis of TWINSPAN divided the 14 rare species into 3 groups against the elevation, namely low elevation species group, moderate elevation species group, and high elevation species group. The analysis of DCA ordination showed similar results to that of TWINSPAN. In the paper, the authors discussed the reasons forming the distribution pattern of rare plant species, and pointed out that the important function of riparian zone on rare plant species protection.