采用直接熔解法研究了SiO_2颗粒在CaO-SiO_2-MgO-Al_2O_3渣系中的熔解过程,探索了炉渣成分、温度对SiO_2颗粒熔解时间的影响规律,通过SEM-EDS并结合factsage软件分析了SiO_2熔解机理,确定SiO_2颗粒周围没有形成固相层,并在此基础上结合缩芯模型构建了动力学模型。结果表明,随着炉渣碱度及温度提高,SiO_2颗粒熔解完成所需时间逐渐降低,而随着炉渣中MgO及Al_2O_3含量增加,SiO_2颗粒的熔解完成所需时间先降低后增加。SiO_2的熔解过程分为2个阶段,反应前期为界面反应控制,表观活化能为330.52 k J/mol;反应后期为外扩散控制,表观活化能为480.28 k J/mol,控制环节的转变是由熔体黏度的变化造成的。
采用差热分析仪及XRD衍射仪确定了高炉渣纤维的玻璃化转变温度、开始析晶温度及析晶相,并在此基础上结合Matusita-sakka方程研究析晶动力学,获得析晶动力学参数。结果表明:不同升温速率条件下高炉渣纤维的玻璃化转变温度为707~721℃,开始析晶温度为847~879℃;但热处理条件下高炉渣纤维的析晶温度700℃,主要是由于不同升温速率下造成温度滞后,同时随着温度的提高及在此温度长期作用下析出的主晶相为黄长石,以及少量钙长石和透辉石。高炉渣纤维晶体的生长因子m为3,表明晶体以三维方式生长,且析晶活化能约为347.287 k J·mol-1。
为探索烧结过程中高磷鲕状赤铁矿的脱磷机理,采用综合热分析仪,在升温速率分别为10、15、20℃/min的条件下,通过与Fe2O3的对比试验,对高磷铁矿进行了气化脱磷动力学研究。结果表明:气化脱磷反应在第2失重阶段发生,且温度为850℃时,Ca5(PO4)3F和脱磷剂反应开始,1 050℃左右,脱磷反应最剧烈。采用Ozawa法计算了高磷铁矿反应的第1、2阶段和Fe2O3反应的第2阶段活化能,分别为104.71,250.55和168.80 k J/mol,脱磷反应过程中克服能垒需要更高能量;气化脱磷反应机理函数符合二维扩散Valensi方程。