以正己酸和氨基硫脲为原料,加热回流条件下得到己酰胺硫脲中间体,该中间体在碱溶液中成环并酸化制得5-戊基-1,2,4-三唑-3-硫酮(PETT),采用红外光谱和核磁共振氢谱及碳谱确认其结构。研究PETT对黄铜矿的浮选性能及其在黄铜矿表面的吸附热力学及机理。研究结果表明:PETT是黄铜矿的优良捕收剂,其吸附于黄铜矿表面的优选p H范围为4.0~9.0,吸附量随着温度的升高而增大,其等温吸附符合Langmuir模型,吸附焓变ΔH为54.27 k J/mol,熵变ΔS为278.82 J/(mol·K),吸附自由能变ΔG为-28.81 k J/mol(298 K)。PETT吸附于黄铜矿表面的过程可能为自发、吸热的单分子层化学吸附。PETT通过其三唑环内氮原子和环外硫原子与黄铜矿表面的铜原子成键而化学吸附于黄铜矿表面。
Gemini quaternary ammonium salt surfactants, butane-a, co-bis(dimethyl dodeculammonium bromide) (BDDA) ethane-a, fl-bis(dimethyl dodeculammonium bromide) (EDDA) were adopted to comparatively study the flotation behaviors of kaolinite, pyrophyllite and illite. It was found that three silicate minerals all exhibited good floatability with Gemini cationic surfactants as collectors over a wide pH range, while BDDA showed a stronger collecting power than EDDA. FTIR spectra and zeta potential analysis indicated that the mechanism of adsorption of Gemini collector molecules on three silicate minerals surfaces was almost identical for the electronic attraction and hydrogen bonds effect. The theoretically obtained results of density functional theory (DFT) at B3LYP/6-31G (d) level demonstrated the stronger collecting power of BDDA presented in the floatation test and zeta potential measurement.