Graph-theoretical approaches have been widely used for data clustering and image segmentation recently. The goal of data clustering is to discover the underlying distribution and structural information of the given data, while image segmentation is to partition an image into several non-overlapping regions. Therefore, two popular graph-theoretical clustering methods are analyzed, including the directed tree based data clustering and the minimum spanning tree based image segmentation. There are two contributions: (1) To improve the directed tree based data clustering for image segmentation, (2) To improve the minimum spanning tree based image segmentation for data clustering. The extensive experiments using artificial and real-world data indicate that the improved directed tree based image segmentation can partition images well by preserving enough details, and the improved minimum spanning tree based data clustering can well cluster data in manifold structure.
针对处理大数据时传统聚类算法失效或效果不理想的问题,提出了一种大数据的密度统计合并算法(density-based statistical merging algorithm for large data sets,简称DSML).该算法将数据点的每个特征看作一组独立随机变量,并根据独立有限差分不等式获得统计合并判定准则.首先,使用统计合并判定准则对Leaders算法做出改进,获得代表点集;随后,结合代表点的密度和邻域信息,再次使用统计合并判定准则完成对整个数据集的聚类.理论分析和实验结果表明,DSML算法具有近似线性的时间复杂度,能处理任意形状的数据集,且对噪声具有良好的鲁棒性,非常有利于处理大规模数据集.
A new two-step framework is proposed for image segmentation. In the first step, the gray-value distribution of the given image is reshaped to have larger inter-class variance and less intra-class variance. In the sec- ond step, the discriminant-based methods or clustering-based methods are performed on the reformed distribution. It is focused on the typical clustering methods-Gaussian mixture model (GMM) and its variant to demonstrate the feasibility of the framework. Due to the independence of the first step in its second step, it can be integrated into the pixel-based and the histogram-based methods to improve their segmentation quality. The experiments on artificial and real images show that the framework can achieve effective and robust segmentation results.