您的位置: 专家智库 > >

石敏

作品数:3 被引量:4H指数:1
供职机构:南京航空航天大学更多>>
发文基金:国家杰出青年科学基金更多>>
相关领域:理学更多>>

文献类型

  • 1篇期刊文章
  • 1篇学位论文
  • 1篇会议论文

领域

  • 2篇理学

主题

  • 3篇分数阶
  • 1篇导数
  • 1篇神经元
  • 1篇时滞
  • 1篇网络
  • 1篇网络模型
  • 1篇稳定性
  • 1篇小世界
  • 1篇小世界网络
  • 1篇小世界网络模...
  • 1篇非线性动力
  • 1篇非线性动力学
  • 1篇分岔
  • 1篇分数阶导数
  • 1篇分数阶系统
  • 1篇HOPF分岔
  • 1篇簇放电
  • 1篇S-

机构

  • 3篇南京航空航天...
  • 1篇解放军理工大...

作者

  • 3篇石敏
  • 2篇王在华

传媒

  • 1篇中国科学:物...

年份

  • 2篇2013
  • 1篇2012
3 条 记 录,以下是 1-3
排序方式:
几类分数阶系统的稳定性及非线性动力学
分数阶微积分是经典微积分的推广。利用分数阶微分方程建模并与常微分方程描述的模型相比较,往往体现出如下优点:一方面,分数阶模型的参数较少,数学形式更简单。这在粘弹性材料、非Newton流体力学等领域出现的分数阶本构方程中得...
石敏
关键词:分数阶系统非线性动力学
文献传递
一个分数阶小世界网络模型的稳定性与Hopf分岔延迟控制被引量:3
2013年
本文首先将一个含时滞的小世界网络模型推广到分数阶情形,然后详细讨论了其唯一正平衡点的稳定性切换与Hopf分岔,得到了稳定性区间的显式表达式和发生Hopf分岔的条件,进而采用Pyragas型时滞反馈控制,使得即使在较强非线性因素条件下,通过适当增大增益取值和调节分数阶的阶次,可显著延迟受控系统的Hopf分岔发生,从而大大提高网络系统平衡点的稳定性.数值算例验证了理论的正确性.
石敏王在华
关键词:分数阶时滞小世界网络稳定性HOPF分岔
分数阶Morris-Lecar神经元系统的簇放电模式研究
石敏王在华
关键词:分数阶导数簇放电
共1页<1>
聚类工具0