准确的风电功率预测对电力系统的安全稳定运行十分重要。从风功率统计特征出发,提出进行风电功率超短期预测的动态谐波回归方法。首先利用风电功率与不同高度风速的三次函数关系构建回归模型;然后采用自回归移动平均模型(autoregressive integrated moving average model,ARIMA)对回归的残差建模来充分利用风电功率时间序列的历史信息;最后针对风电功率的日季节性特点,引入傅里叶级数形成最终预测模型。经风电场实际数据计算验证表明,该方法有效弥补了ARIMA方法和回归方法的不足,减小了风电预测均方根误差(root mean squared error,RMSE),提高了风电预测精度。通过和持续法、ARIMA 2种现有预测方法比较,验证了所提模型具有更高的预测精度,说明该方法具有一定的实际应用价值。