唐锐
- 作品数:2 被引量:55H指数:2
- 供职机构:北京交通大学计算机与信息技术学院更多>>
- 发文基金:北京市自然科学基金中央高校基本科研业务费专项资金国家自然科学基金更多>>
- 相关领域:自动化与计算机技术更多>>
- 一种有效的社会网络社区发现模型和算法被引量:51
- 2012年
- 社会网络的社区发现存在划分效果较好的算法时间复杂度过高、现有快速划分算法划分质量不佳、缺乏表达和充分利用个体和链接属性信息的模型和机制等问题.针对这些问题,提出了一种边稳定系数模型和一种能表达个体间关系紧密度的完全信息图模型,在此基础上设计和实现了一种有效的社区发现算法.提出的完全信息图模型具有较高通用性,适用于需要融合个体和链接属性的社区发现算法.通过系列实验表明,所提出的以边稳定系数模型和完全信息图为基础的算法,对社会网络中的社区发现问题是有效的.算法不仅具有较快的速度,也能适用于带权与不带权的网络,得到的社区划分结果也具有较高的划分质量.
- 林友芳王天宇唐锐周元炜黄厚宽
- 关键词:社会网络信息融合链接挖掘
- 高度重叠社区的社区合并优化算法被引量:4
- 2011年
- 当原图转换成边图后,在边图上进行社区发现可以天然地得到重叠社区,然而得到的社区往往相互大面积重叠,甚至相互包含,导致社区模块性质量较低.针对这一问题,在得到边图下重叠社区发现算法结果的基础上,我们将进一步以优化重叠社区模块化质量函数为标准进行社区合并,以获得高质量的重叠社区.本文首先提出一种描述社区间重叠程度的重叠系数,并基于此进一步提出一种构建带权社区图的启发式方法,能够快速有效地完成社区合并的过程.在人工生成网络与真实世界网络上的实验,进一步验证了该算法能够在不削弱边图方法速度优势的前提下,提高高度重叠社区的模块性.
- 武志昊林友芳田盛丰唐锐
- 关键词:数据挖掘边图