The hydrolysis process of Ru(III) complex (HL)[trans-RuC14L(dmso-S)] (L=l-methyl-l,2,4- triazole and dmso-S=S-dimethyl sulfoxide) (1), a potential antitumor complex similar to the well-known antitumor agent (Him)[trans-RuC14 (dmso-S)(im)] (NAMI-A, im=imidazole), was investigated using density functional theory combined with the conductor-like polarizable continuum model approach. Tile structural characteristics and the detailed energy profiles for the hydrolysis processes of this complex were obtained. For the first hydrolysis step, complex 1 has slightly higher barrier energies than the reported anticancer drug NAMI-A, and the result is in accordance with the experimental evidence indicating larger half-life for complex 1. For the second hydrolysis step, the formation of cis-diaqua species is thermodynamic preferred to that of trans isomers. In addition, on the basis of the analysis of electronic characteristics of species in the hydrolysis process, the trend in nucleophilic attack abilities of hydrolysis products by pertinent biomolecules is revealed and predicted.
A three-dimensional quantitative structure-activity relationship (3D-QSAR) study of a series of 7,8-dialkyl-l,3-diaminopyrrolo-[3,2-f] quinazolines with anticancer activity as dihydrofo- late reductase (DHFR) inhibitors was carried out by using the comparative molecular field analysis (CoMFA), on the basis of our reported 2D-QSAR of these compounds. The es- tablished 3D-QSAR model has good quality of statistics and good prediction ability; the non cross-validation correlation coefficient and the cross-validation value of this model are 0.993 and 0.619, respectively, the F value is 193.4, and the standard deviation SD is 0.208. This model indicates that the steric field factor plays a much more important role than the electrostatic one, in satisfying agreement with the published 2D-QSAR model. However, the 3D-QSAR model offers visual images of the steric field and the electrostatic field. The 3D-QSAR study further suggests the following: to improve the activity, the substituent R^1 should be selected to be a group with an adaptive bulk like Et or i-Pr, and the substituent R should be selected to be a larger alkyl. In particular, based on our present 3D-QSAR as well as the published 2D-QSAR, the experimentMly-proposed hydrophobic binding mechanism on the receptor-binding site of the DHFR can be further explained in theory. Therefore, the QSAR studies help to further understand the "hydrophobic binding" action mechanism of this kind of compounds, and to direct the molecular design of new drugs with higher activity.