章起始课作为单元内容的开始,对整个单元的学习有着统领和导向作用,有利于学生全局观的形成和完整知识体系的建构。本文以“勾股定理”章起始课为例,从单元整体视角出发探究如何开展章起始课的教学,并提出结论:注重整体设计,厘清课堂主线;巧用情境引领,突出学生地位,以为初中数学章起始课教学提供一定参考。The initial lesson of a chapter serves as the beginning of the unit’s content, playing a leading and guiding role in the entire unit’s learning process. It is beneficial for students to form a global perspective and construct a complete knowledge system. This paper takes the initial lesson of the “Pythagorean Theorem” chapter as an example, exploring from a holistic unit perspective how to conduct the teaching of the initial lesson of a chapter, and proposes the conclusion: focus on overall design, clarify the main thread of the class;skillfully use context to lead, highlight the student’s position, to provide certain references for the teaching of the initial lessons of junior high school mathematics chapters.
1背景多年来,美国学生的数学素养处在低于经济合作发展组织国家平均水平的困境。2009年6月1日,由全美州长协会(National Govemors Association)与全美州首席教育官员理事会(Council of Chief State School Officers)发起倡议,联合美国51个州和特区,一起参与制订美国的《州共同核心数学课程标准》(Common Core State Standards for Mathematies,以下简称CCSSM)[1]。2010年6月,美国第一部全国统一的《州共同核心课程标准》颁布,这里包括《州共同核心数学课程标准》,现已有44个州采纳[2]。2 CCSSM框架与内容CCSSM[3]由导言。
概念学习是数学学习的出发点,APOS理论是一种基于建构主义的学习理论,是很好的概念学习的理论模型。文章采用文献研究法和文本分析法,以APOS理论为基础,进行指数函数概念的教学设计,旨在帮助学生经历“活动、过程、对象、图式”四个阶段,深度理解知识和主动建构知识。最后提出了在概念教学中教师应注重概念引入生活性、学生学习主体性和知识体系建构性的教学建议。Concept learning is the starting point of mathematics, and APOS theory is a learning theory based on constructivism, which is a good theoretical model of concept learning. The article adopts the literature research method and text analysis method, based on the APOS theory, to carry out the teaching design of the exponential function concept, aiming at helping students to go through the four phases of “activity, process, object, schema” to deeply understand the knowledge and actively construct the knowledge. Finally, it is proposed that in conceptual teaching, teachers should focus on introducing concepts into life, emphasizing students’ subjectivity in learning and the constructiveness of the knowledge system.