This paper reports the DC steady-state voltage and current transfer characteristics and power dissipation of the Complimentary Metal-Oxide-Silicon (CMOS) voltage-inverter circuit using one physical Bipolar Field-Effect Transistor (BiFET) of nanometer dimensions. The electrical characteristics are numerically obtained by solving the five partial dif- ferential equations for the transistor structure of two MOS-gates on the two surfaces of a thin pure silicon base layer with electron and hole contacts on both ends of the thin base. Internal and CMOS boundary conditions are used on the three potentials (electrostatic and electron and hole electrochemical potentials). Families of curves are rapidly computed using a dual-processor personal computer running the 64-bit FORTRAN on the Windows XP operating system.