With an established convection-dispersion model for the thermal transport in aquifer, the thermal transport processes in an unconfined aquifer of a Groundwater Heat Pump (GWHP) system in Chengdu, China, are simulated with double-well intervals and cooling-load design fluctuations in summer running period under special groundwater flow and heat source conditions, and the stage-characteristics of the thermal transport in the aquifer are investigated in the running cycle (1 year) numerically. The results show that the thermal transport in the aquifer is closely related to the distance between pumping and injecting wells and the cooling-load design fluctuations, especially, to the cycling water volume. The thermal transport in the aquifer sees different characteristics in the two states in the pumping-recharging stages in summer/winter and the storing stages in spring/autumn. With the hydro-geologic theory and the numerical model, the effect of the groundwater-flow on the thermal transport in the unconfined aquifer is discussed.
This article deals with the solute transport in a single fracture with the combination of the Lattice Boltzmann Method (LBM) and Modified Moment Propagation (MMP) method, and this mixed method is proved to have several advantages over the LBM and Moment Propagation (MP) mixed method which leads to negative concentrations under some conditions in computation. The disadvantage of LBM/MP has been overcome to a certain extent. Also, this work presents an LBM solution of modeling single fractures with uniformly or randomly distributed grains, which can provide a new path of applying the LBM in solute transport simulation in fractures.