Assume that S is an almost excellent extension of R. Using functors HomR(S,-) and -×R S, we establish some connections between classes of modules lR and lS, cotorsion pairs (AR, BR) and (AS, BS). If lS is a T-extension or (and) H-extension of lR, we show that lS is a (resp., monomorphic, epimorphic, special) preenveloping class if and only if so is lR. If (AS, BS) is a TH- extension of (AR, BR), we obtain that (AS, BS) is complete (resp., of finite type, of cofinite type, hereditary, perfect, n-tilting) if and only if so is (AR, BR).