为研究陶瓷在热压烧结炉内温度场的动态分布规律,选用直径400 mm sialon陶瓷为研究对象,采用有限元辐射计算方法研究了加热速率、压头端面温度、隔热套筒高度对热压炉内温度场分布的影响.结果表明:在加热初始阶段,试样心部与边缘的温差随升温速率提高而增大,而在加热后期,随着升温时间增加,试样心部与边缘的温差逐渐减小,并稳定在17℃;样品区达到稳定温度所需时间随升温速率增加而减小;增大隔热套筒与模具之间的距离、增加石墨垫块与水冷压头之间的热阻均有利于提高样品区温度场的均匀性;样品区温度随其距中心距离增加而增大,并沿径向呈抛物线形分布.
The ultrasonic attenuation coefficient is one of the most important acoustic parameters to character the performance of a thin layer media, but it can not be measured due to mutual superposition of multiple reflected waves at the same interface in ultrasonic testing. Ultrasonic pulse echo and lamb wave to evaluate the thin layer media can not obtain attenuation coefficient at present. In this paper, analytical method was used to study the acoustics characteristic of thin layer media with the ultrasonic echo testing. Meanwhile, the process of ultrasonic attenuation measurement was presented. Simulation and experimental investigation is focused on a thin layer of rubber. Attenuation coefficient was introduced and evaluation mathematics model was established by the two echoes cross-correlation with and without the thin layer media based on the time delay spectrum. It involved the parameters related to the acoustic properties of the thin layer media. Through calculating the sound velocity and acoustic impedance with the evaluation model, it can deduce the relation between the attenuation coefficient and the frequency. Through analyzing the simulation results, it indicated that the attenuation coefficients were invariable with the varying of the frequency. However, the attenuation coefficients increased with the frequency increasing by ultrasonic testing the thin layer of rubber. The reason was that the attenuation factor was not taken into account during the simulation. This method overcomes shortcomings that the traditional ultrasonic testing can not evaluate the thin layer media whose thickness is less than motivation wavelength. It is a new solution to study the attenuation characteristic and on-line nondestructive evaluation in the thin layer media.
WANG XingguoCHANG JunjieSHAN YingchunTIE ShaodongYAO ManXU Jiujun