Polyacrylonitrile (PAN), PAN/cellulose acetate (CA), and PAN/CA-Ag based activated carbon nanofiber (ACNF) were prepared using electrostatic spinning and further heat treatment. Thermogravimetrylifferential scanning calorimetry (TG-DSC) analysis indicated that the addition of CA or Ag did not have a significant impact on the thermal decomposition of PAN materials but the yields of fibers could be improved. Scanning electron microscopy (SEM) analysis showed that the micromorphologies of produced fibers were greatly influenced by the viscosity and conductivity of precursor solutions. Fourier transform infrared spectroscopy (FT-IR) analysis proved that a cyclized or trapezoidal structure could form and the carbon scaffold composed of C=C bonds appeared in the PAN-based ACNFs. The characteristic dif- fraction peaks in X-ray diffraction (XRD) spectra were the evidence of a turbostratic structure and silver existed in the PAN/CA-Ag based ACNF. Brurmer-Emmett-Teller (BET) analysis showed that the doping of CA and Ag increased surface area and micropore volume of fi- bers; particularly, PAN/CA-Ag based ACNF exhibited the best porosity feature. Furthermore, SO2 adsorption experiments indicated that all the three fibers had good adsorption effects on lower concentrations of SO2 at room temperature; especially, the PAN/CA-Ag based ACNF showed the best adsorption performance, and it may be one of the most promising adsorbents used in the fields of chemical industry and en- vironment protection.