Effective recovery of UO2+2 from wastewater is essential for nuclear fuel industry and related industries.In this study,a novel adsorbent was prepared by loading titanium(Ti4+) onto collagen fiber(TICF),and its physical and chemical properties as well as adsorption to UO2+2 in nuclear fuel industrial wastewater were investigated.It is found that TICF can effectively recover UO2+2 from the wastewater with excellent adsorption capacity.The adsorption capacity is 0.62 mmol·g-1 at 303 K and pH 5.0 when the initial concentration of UO2+2 is 1.50 mmol·L-1.The adsorption isotherms can be described by the Langmuir equation and the adsorption capacity increases with temperature.The effect of co-existed F on the adsorption capacity for UO2+2 is significant,which can be eliminated by adding aluminum ions as complexing agent,while the other co-existed ions in the solutions,including HCO-3,Cl-,NO-3,Ca2+,Mg2+ and Cu2+,have little effect on the adsorption capacity for UO2+2.The saturated TICF after UO2+2 adsorption can be regenerated by using 0.2 mol·L-1 nitrate(HNO-3) as desorption agent,and the TICF can be reused at least three times.Thus the TICF is a new and effective adsorbent for the recovery of UO2+2 from the wastewater.