Little is known about the genome of Pacific white shrimp (Litopenaeus vannamei). To address this, we conducted BAC (bacterial artificial chromosome) end sequencing of L. vannamei. We selected and sequenced 7 812 BAC clones from the BAC library LvHE from the two ends of the inserts by Sanger sequencing. After trimming and quality filtering, 11 279 BAC end sequences (BESs) including 4 609 paired- ends BESs were obtained. The total length of the BESs was 4 340 753 bp, representing 0.18% of the L. vannamei haploid genome. The lengths of the BESs ranged from 100 bp to 660 bp with an average length of 385 bp. Analysis of the BESs indicated that the L. vannamei genome is AT-rich and that the primary repeats patterns were simple sequence repeats (SSRs) and low complexity sequences. Dinucleotide and hexanucleotide repeats were the most common SSR types in the BESs. The most abundant transposable element was gypsy, which may contribute to the generation of the large genome size of L. vannamei. We successfully annotated 4 519 BESs by BLAST searching, including genes involved in immunity and sex determination. Our results provide an important resource for functional gene studies, map construction and integration, and complete genome assembly for this species.
Pacific white shrimp has become a major aquaculture and fishery species worldwide.Although a large scale EST resource has been publicly available since 2008,the data have not yet been widely used for SNP discovery or transcriptome-wide assessment of selective pressure.In this study,a set of 155 411 expressed sequence tags(ESTs) from the NCBI database were computationally analyzed and 17 225 single nucleotide polymorphisms(SNPs) were predicted,including 9 546 transitions,5 124 transversions and 2 481 indels.Among the 7 298 SNP substitutions located in functionally annotated contigs,58.4%(4 262) are non-synonymous SNPs capable of introducing amino acid mutations.Two hundred and fifty nonsynonymous SNPs in genes associated with economic traits have been identified as candidates for markers in selective breeding.Diversity estimates among the synonymous nucleotides were on average 3.49 times greater than those in non-synonymous,suggesting negative selection.Distribution of non-synonymous to synonymous substitutions(Ka/Ks) ratio ranges from 0 to 4.01,(average 0.42,median 0.26),suggesting that the majority of the affected genes are under purifying selection.Enrichment analysis identified multiple gene ontology categories under positive or negative selection.Categories involved in innate immune response and male gamete generation are rich in positively selected genes,which is similar to reports in Drosophila and primates.This work is the first transcriptome-wide assessment of selective pressure in a Penaeid shrimp species.The functionally annotated SNPs provide a valuable resource of potential molecular markers for selective breeding.
Two Large-insert genomic bacterial artificial chromosome (BAC) libraries of Zhikong scallop Chlamys farreri were constructed to promote our genetic and genomic research. High-quality megabase-sized DNA was isolated from the adductor muscle of the scallop and partially digested by BamH I and Mbo I, respectively. The BamH I library consisted of 53 760 clones while the Mbo I library consisted of 7 680clones. Approximately 96 % of the clones in BamH I library contained nuclear DNA inserts in average size of 100 kb, providing a coverage of 5.3 haploid genome equivalents. Similarly, the Mbo I library with an average insert of 145 kb and no insert-empty clones, thus providing a genome coverage of 1.1 haploid genome equivalents.