The cross sections of fragments (δf) produced in the even 36~52Ca projectile frag- mentation reactions at 80 AMeV are calculated in the framework of the statistical abrasion- ablation model. The distributions of af are investigated. Linear correlations between the peak positions of the distributions and charge numbers of the fragment isotopes are found.
The yields of fragments produced in the ^60Ni+ ^12C reactions at 80 A and 140 A MeV, and with maximum impact parameters of 1.5, 2 and 7.3 fm at 80 A MeV are calculated by the statistical abrasion-ablation model. The yields of fragments are analyzed by the isobaric yield ratio (IYR) method to extract the coefficient of symmetry energy to temperature (asym/T ). The incident energy is found to influence asym/T very little. It’s found that asym/T of fragments with the same neutron-excess I = N-Z increases when A increases, while asym/T of isobars decreases when A increases. The asym/T of prefragments is rather smaller than that of the final fragments, and the asym/T of fragments in small impact parameters is smaller than that of the larger impact parameters, which both indicate that asym/T decreases when the temperature increases. The choice of the reference IYRs is found to have influence on the extracted a sym /T of fragments, especially on the results of the more neutron-rich fragments. The surface-symmetry energy coefficient (bs/T ) and the volume-symmetry energy coefficient (bv/T) are also extracted, and the bs/bv is found to coincide with the theoretical results.
By investigating the cross section distributions of fragments produced in the 140 A MeV 40,48Ca+9Be and 1 A GeV 124,136Xe+Pb reactions, the isospin dependence of projectile fragmentation in fragment production is studied. In the framework of the statistical abrasion-ablation model, the 1 A GeV 136Xe+ 208Pb reaction is calculated. By adjusting the diffuseness parameter in neutron density distribution of 136Xe, we find the isospin dependence of projectile fragmentation in fragment production is sensitive to the neutron-skin thickness of the projectile nucleus.