We successfully designed and fabricated an absorption-type of superconducting coplanar waveguide (CPW) resonators. The resonators are made from a niobium film (about 160 nm thick) on a high-resistance Si substrate, and each resonator is fabricated as a meandered quarter-wavelength transmission line (one end is short to the ground and another end is capacitively coupled to a through feedline). With a vector network analyzer we measured the transmissions of the applied microwave through the resonators at ultra-low temperature. The obtained loaded quality factors are significantly high, i.e. up to ~10 6 . When the temperature increases slowly from the base temperature (20 mK), the resonance frequencies of the resonators are blue shifted and the quality factors are lowered slightly. In principle, this type of device can integrate a series of CPW resonators with a common feedline, making it a promising candidate as the data bus for coupling distant solid-state qubits and the sensitive detector of single photons.
LI HaiJieWANG YiWenWEI LianFuZHOU PinJiaWEI QiangCAO ChunHaiFANG YuRongYU YangWU PeiHeng
We investigate the dynamics of correlations for two-parameter qubit--qutrit states under various local decoherence channels including depalising, phase-flip, bit- and trit-flip, bit- and trit-phase-flip, and depolarizing channels. We find that, under certain conditions, the classical: correlations may not be affected by the noise or decay monotonically. The quantum correlations measured by measurement-induced disturbance (MID) show three types of dynamical behaviors: (i) monotonic 'decay to zero, (ii) monotOniC decay to a nonzero steady value, (iii) increase from zero and then decrease to zero in a monotonic way. Consequently, we find that, differing from the dynamics of entanglement, the present classical and quantum correlations do not reveal sudden death behavior.