Presently, research is lacking regarding the diagnosis and evaluation of habitat degradation in enclosed bay systems. We established a diagnostic model for enclosed bay habitat degradation(EBHD model) using a multi-approach integrated diagnostic method in consideration of driving force-pressurestate-infl uence-response. The model optimizes the indicator standardization with annual average change rate of habitat degradation as the basic element, to refl ect accurately the impact of the change and speed of degradation on the diagnostic results, to quantify reasonably the contribution of individual diagnostic indicator to habitat degradation, and to solve the issue regarding the infl uence of subjective factors on the evaluation results during indicator scoring. We then applied the EBHD model for the Sansha Bay in Fujian Province, China, evaluated comprehensively the situation of habitat degradation in the bay, and screened out the major controlling factors in the study area. Results show that the diagnostic results are consistent in overall with the real situation of the study area. Therefore, the EBHD model is advantageous in terms of objectivity and accuracy, making a breakthrough in diagnosis and evaluation for habitat degradation in enclosed bay systems.
Unbalanced inputs and outputs of material are the root cause of habitat degradation in Sansha Bay,Fujian Province,China. However,the cumulative pollution varies in different geographic locations and natural conditions in the enclosed bay. In this study,hydrodynamic conditions,sediment characteristics,and aquaculture methods were recognized as the underlying causes of spatial heterogeneity in the distribution of nitrogen and phosphorous pollutants,the two major controlling factors of habitat degradation in the bay area. In order to achieve the goal of balancing nutrient inputs and outputs in Sansha Bay,we developed a feasible and practical zone restoration strategy for reasonable adjustment and arrangement of aquaculture species and production scale in accordance with varying hydrodynamic conditions and sediment characteristics in six sub-bay areas(sub-systems). The proposed zone restoration strategy lays a solid foundation for habitat restoration and management in Sansha Bay.
The coastal zone is an area characterized by intense interaction between land and sea, high sensitivity to regional environmental changes, and concentrated human activities. Little research has investigated vegetation cover changes in coastal zones resulting from climate change and land-use change, with a lack of knowledge about the driving mechanism. Normalized diff erence vegetation index(NDVI) can be used as an indicator for change of the coastal environment. In this study, we analyzed the interannual changes and spatial distribution of NDVI in the coastal zone around Jiaozhou Bay in Qingdao, a coastal city undergoing rapid urbanization in northeast China. The underlying causes of NDVI variations were discussed in the context of climate change and land-use change. Results showed that the spatio-temporal distribution of NDVI displayed high spatial variability in the study area and showed a typical trend of gradually increasing from coastal to inland regions. The significant increase area of NDVI was mainly found in newly added construction land, extending along the coastline towards the inland. Land vegetation cover demonstrated a certain response relationship to sea-land climate change and land-based activities. The impact of land-based human activities was slightly greater than that of sea-land climate change for land vegetation cover. The results indicate that promoting ecological policies can build an ecological security framework of vegetation suitable for the resource characteristics of coastal cities. The framework will buf fer the negative ef fects of sea-land climate change and land-based human activities on vegetation cover and thereby achieve the balance of regional development and ecological benefits in the coastal zone.