基于第三版本HOAPS(Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data)海表面温度、潜热通量、感热通量、海表面空气比湿以及海表面风场5个参量的18a(1988~2005年)逐月平均资料,利用经验正交函数和奇异值分解方法分析了异常潜热和感热通量场在西北太平洋的时空分布特征及造成这种分布的主要影响因素。EOF的分析结果表明,异常潜热通量场主要体现为第一第二两个模态的变化,第一模态显示整个海域呈同相变化且在时间上呈准年周期变化,第二模态则描述了分别位于10°N,25°N和40°N的3个极值中心并伴随多年振荡,由因子载荷分布可知热带太平洋是第二模态的行为中心,因此该模态可能与ENSO事件相关。异常感热通量场则主要表现为第一模态的变化,在时间上呈准年周期变化并伴随有多年时间尺度的振荡。奇异值分解方法的分析结果表明异常海表面风场是异常潜热和感热通量场时空变化的重要影响因素。
TOPEX/POSEIDON altimeter data from October 1992 to June 2002 are used to calculate the global barotropic M2 tidal currents using long-term tidal harmonic analysis. The tides calculated agree well with ADCP data obtained from the South China Sea (SCS). The maximum tide velocities along the semi-major axis and semi-minor axis can be computed from the tidal ellipse. The global distribution of M2 internal tide vertical energy flux from the sea bottom is calculated based on a linear internal wave generation model. The global vertical energy flux of M2 internal tide is 0.96 TW, with 0.36 TW in the Pacific, 0.31 TW in the Atlantic and 0.29 TW in the Indian Ocean, obtained in this study. The total horizontal energy flux of M2 internal tide radiating into the open ocean from the lateral boundaries is 0.13 TW, with 0.06 TW in the Pacific, 0.04TW in the Atlantic, and 0.03 TW in the Indian Ocean. The result shows that the principal lunar semi-diurnal tide Me provides enough energy to maintain the large-scale thermohaline circulation of the ocean.