A proper [h]-total coloring c of a graph G is a proper total coloring c of G using colors of the set [h] ={1, 2,..., h}. Let w(u) denote the sum of the color on a vertex u and colors on all the edges incident to u. For each edge uv ∈ E(G), if w(u) ≠ w(v), then we say the coloring c distinguishes adjacent vertices by sum and call it a neighbor sum distinguishing [h]-total coloring of G. By tndi∑ (G), we denote the smallest value h in such a coloring of G. In this paper, we obtain that G is a graph with at least two vertices, if mad(G) 〈 3, then tndi∑ (G) ≤k + 2 where k = max{△(G), 5}. It partially confirms the conjecture proposed by Pilgniak and Wolniak.