In this study, the Palmer Drought Severity Index (PDSI) was used to analyze the average and extreme dry/wet states of Asia and North America from 1953 to 2003. The results indicate that the two continents underwent drying trends during this period. Compared with North America, Asia showed more severe drought trends. However, more significant and regular seasonal variation for drought was found in North America. The driest regions in Asia were located in the northern region of China, Mongolia, and eastern mid-Siberian plateau. Most regions in central North America were relatively wetter than other regions. The northern and southwestern regions of North America, as well as the Atlantic and Pacific coastal areas, experienced the most drought during this period. A sharp increase of the drought area and the number of extreme drought events took place from 1997 to 2003 in both Asia and North America. Severe drought events were more likely to occur during the summer on both continents. Asia had the most extreme drought events during July, but North America reached its highest drought frequency from June to September. In Asia, a persistent increasing trend of extreme drought emerged throughout the studied period. However, a more complex evolution of drought emerged in North America: a decreasing trend appeared before the mid-1960s and an increasing trend appeared after the late 1970s. A relatively steady dry/wet status was observed between the mid-1960s and the late 1970s. The role of exceptional, extreme drought events with respect to the La Nin?a event was considered during 1997–2003.
Based on best-track data and JRA-25 reanalysis,a climatology of western North Pacific extratropical transition (ET) of tropical cyclone (TC) is presented in this paper. It was found that 35% (318 out of 912) of all TCs underwent ET during 1979-2008. The warm-season (June through September) ETs account for 64% of all ET events with the most occurrence in September. The area 120°E-150°E and 20°N-40°N is the most favorable region for ET onsets in western North Pacific. The TCs experiencing ET at latitudes 30°N-40°N have the greatest intensity in contrast to those at other latitude bands. The distribution of ET onset locations shows obviously meridional migration in different seasons. A cyclone phase space (CPS) method was used to analyze the TC evolution during ET. Except for some cases of abnormal ET at relatively high latitudes,typical phase evolution paths-along which TC firstly showed thermal asymmetry and an upper-level cold core and then lost its low-level warm core-can be used to describe the main features of ET processes in western North Pacific. Some seasonal variations of ET evolution paths in CPS were also found at low latitudes south of 15°N,which suggests different ET onset mechanisms there. Further composite analysis concluded that warm-season ETs have generally two types of evolutions,but only one type in cold season (October through next May). The first type of warm-season ETs has less baroclinicity due to long distance between the TC and upper-level mid-latitude system. However,significant interactions between a mid-latitude upper-level trough and TC,which either approaches or is absorbed into the trough,and TC's relations with downstream and upstream upper-level jets,are the fingerprints for both a second type of warm-season ETs and almost all the cold-season ETs. For each type of ETs,detailed structural characteristics as well as precipitation distribution are illustrated by latitude.