An adaptive fuzzy logic controller (AFC) is presented for the signal control of the urban traffic network. The AFC is composed of the signal control system-oriented control level and the signal controller-oriented fuzzy rules regulation level. The control level decides the signal timings in an intersection with a fuzzy logic controller. The regulation level optimizes the fuzzy rules by the Adaptive Rule Module in AFC according to both the system performance index in current control period and the traffic flows in the last one. Consequently the system performances are improved. A weight coefficient controller (WCC) is also developed to describe the interactions of traffic flow among the adjacent intersections. So the AFC combined with the WCC can be applied in a road network for signal timings. Simulations of the AFC on a real traffic scenario have been conducted. Simulation results indicate that the adaptive controller for traffic control shows better performance than the actuated one.
Deficiencies of the performance-based iterative learning control (ILC) for the non-regular systems are investigated in detail, then a faster control input updating and lifting technique is introduced in the design of performance index based ILCs for the partial non-regular systems. Two ldnds of optimal ILCs based on different performance indices are considered. Finally, simulation examples are given to illustrate the feasibility of the proposed learning controls.
A new control strategy named adjacent coupling error strategy is proposed to multi-motor drive system. The adjacent coupling error control scheme is developed considering the tracking speed error in one motor and the synchronous error among adjacent motors simultaneously. In the strategy, due to non-linear effects of the two mentioned errors to the motion control of motor i, an adaptive fuzzy logic controller is designed to decide the control variable of the motor drive system. The multi-motor drive system is modeled and simulated by SIMULINK. The simulated researches show that the proposed strategy improves the synchronization, stabilization, and convergence of the multi-motor system.
<正>This TCP is primarily designed for wired networks and became very efficient and robust with years of enhanc...
LIU Yong-Min ~(1,2),JIANG Xin-Hua~2,NIAN Xiao-Hong ~2 1.College of Vocational Technology,Central South University of Forestry and Technology,Changsha 410004,China 2.School of Information Science and Engineering,Central South University,Changsha 410075,China