The frequency–space(f–x) empirical mode decomposition(EMD) denoising method has two limitations when applied to nonstationary seismic data. First, subtracting the first intrinsic mode function(IMF) results in signal damage and limited denoising. Second, decomposing the real and imaginary parts of complex data may lead to inconsistent decomposition numbers. Thus, we propose a new method named f–x spatial projection-based complex empirical mode decomposition(CEMD) prediction filtering. The proposed approach directly decomposes complex seismic data into a series of complex IMFs(CIMFs) using the spatial projection-based CEMD algorithm and then applies f–x predictive filtering to the stationary CIMFs to improve the signal-to-noise ratio. Synthetic and real data examples were used to demonstrate the performance of the new method in random noise attenuation and seismic signal preservation.
Signal to noise ratio (SNR) and resolution are two important but contradictory characteristics used to evaluate the quality of seismic data. For relatively preserving SNR while enhancing resolution, the signal purity spectrum is introduced, estimated, and used to define the desired output amplitude spectrum after deconvolution. Since a real reflectivity series is blue rather than white, the effects of white reflectivity hypothesis on wavelets are experimentally analyzed and color compensation is applied after spectrum whitening. Experiments on real seismic data indicate that the cascade of the two processing stages can improve the ability of seismic data to delineate the geological details.
The estimation of the quality factor Q plays a fundamental role in enhancing seismic resolution via absorption compensation in the near-surface layer.We present a new geometry that can be used to acquire field data by combining surface and cross-hole surveys to decrease the effect of geophone coupling on Q estimation.In this study,we drilled number of receiver holes around the source hole,each hole has different depth and each geophone is placed geophones into the bottom of each receiver hole to avoid the effect of geophone coupling with the borehole wall on Q estimation in conventional cross-hole seismic surveys.We also propose a novel tomographic inversion of the Q factor without the effect of the source signature,and examine its stability and reliability using synthetic data.We estimate the Q factors of the near-surface layer in two different frequency bands using field data acquired in the Dagang Oilfield.The results show that seismic absorption in the nearsurface layer is much greater than that in the subsurface strata.Thus,it is of critical practical importance to enhance the seismic solution by compensating for near-surface absorption.In addition,we derive different Q factors from two frequency bands,which can be treated,to some extent,as evidence of a frequency-dependent Q.