The main challenge in the area of reinforcement learning is scaling up to larger and more complex problems. Aiming at the scaling problem of reinforcement learning, a scalable reinforcement learning method, DCS-SRL, is proposed on the basis of divide-and-conquer strategy, and its convergence is proved. In this method, the learning problem in large state space or continuous state space is decomposed into multiple smaller subproblems. Given a specific learning algorithm, each subproblem can be solved independently with limited available resources. In the end, component solutions can be recombined to obtain the desired result. To ad- dress the question of prioritizing subproblems in the scheduler, a weighted priority scheduling algorithm is proposed. This scheduling algorithm ensures that computation is focused on regions of the problem space which are expected to be maximally productive. To expedite the learning process, a new parallel method, called DCS-SPRL, is derived from combining DCS-SRL with a parallel scheduling architecture. In the DCS-SPRL method, the subproblems will be distributed among processors that have the capacity to work in parallel. The experimental results show that learning based on DCS-SPRL has fast convergence speed and good scalability.
Image categorization in massive image database is an important problem. This paper proposes an approach for image categorization, using sparse set of salient semantic information and hierarchy semantic label tree (HSLT) model. First, to provide more critical image semantics, the proposed sparse set of salient regions only at the focuses of visual attention instead of the entire scene was formed by our proposed saliency detection model with incorporating low and high level feature and Shotton's semantic texton forests (STFs) method. Second, we also propose a new HSLT model in terms of the sparse regional semantic information to automatically build a semantic image hierarchy, which explicitly encodes a general to specific image relationship. And last, we archived image dataset using image hierarchical semantic, which is help to improve the performance of image organizing and browsing. Extension experimefital results showed that the use of semantic hierarchies as a hierarchical organizing frame- work provides a better image annotation and organization, improves the accuracy and reduces human's effort.