The post-seismic horizontal and vertical deformations following the 2008 Ms8.0 Wenchuan earth- quake are inferred from GPS and precise leveling data. The post-seismic relaxation process is measured using GPS data from campaign stations located around the Longmenshan fault, and the derived decay time constant is 12 days. The evolution of the post-seismic vertical deformation is obtained from precise leveling data measured near the surface rupture. The results demonstrate that the hanging wall is uplifting and the foot wall is subsi- ding. The amplitude of the post-seismic deformation is lower than that of the co-seismic deformation. The re- gion with the largest post-seismic displacement is located on the leveling route between Maoxian and Beichuan on the hanging wall.
Small earthquakes (Ms〉2.0) have been recorded from 1970 to the present day and reveal a significant diffrence in seismicity between the stable Ordos block and its active surrounding area. The southern Ordos block is a conspicuous small earthquake belt clustered and isolated along the NNW direction and extends to the inner stable Ordos block; no active fault can match this small earthquake cluster. In this paper, we analyze the dynamic mechanism of this small earthquake cluster based on the GPS velocity field (from 1999 to 2007) , which are mainly from Crustal Movement Observation Network of China (CMONOC) with respect to the north and south China blocks. The principal direction of strain rate field, the expansion ratefield, the maximum shear strain rate, and the rotation rate were constrained using the GPS velocity field. The results show that the velocity field, which is bounded by the small earthquake cluster from Tongchuan to Weinan, differs from the strain rate field, and the crustal deformation is left-lateral shear. This left-lateral shear belt not only spatially coincides with the Neo-tectonic belt in the Weihe Basin but also with the NNW small earthquake cluster (the Ziwuling small earthquake cluster). Based on these studies, we speculate that the NNW small earthquake cluster is caused by left-lateral shear slip, which is prone to strain accumulation. When the strain releases along the weak zone of structure, small earthquakes diffuse within its upper crust. The maximum principal compression stress direction changed from NE-SW to NEE-SWW, and the former reverse faults in the southwestern margin of the Ordos block became a left-lateral strike slip due to readjustment of the tectonic stress field after the middle Pleistocene. The NNW Neo-tectonie belt in the Weihe Basin, the different movement character of the inner Weihe Basin (which was demonstrated through GPS measurements) anti the small earthquake cluster belt reflect the activated southern margin of the Ordos block, which was gen
Li YuhangWang QingliangCui DuxinHao MingJi LingyunQin Shanlan
Due to the effect of the collision between the Indian plate and Eurasian plate, Pamirs is constantly moving to the north. Under the interaction among multiple tectonic blocks, strong earthquakes often occurred around the Kalpin block which is located in western Tianshan of Chinese continent. In this paper, we used Intefferometric Synthetic Aperture Radar (InSAR) technique and adopted stacking algorithm to achieve the present-day crustal deformation field of the Kalpin block region based on 38 Envisat ASAR images. The results show that the deformation in radar line of sight around Kalpin block is mainly compressive between south and north with magnitude 1-1.5 mm/a. Displacement decreases gradually from northwest to southeast, which is consistent with the deformation characteristics shown in Tianshan, i.e. crust is gradually shortening from west to east detected by the GPS observations. Also, the Piqiang fault zone is uplifting. And there is an obvious displacement difference between the two sides of the Aozigeertawu fault.