Ensemble forcasting,originally developed for weather prediction,is lately being extended to atmospheric dispersion applications,which is a new,effective methodology for improving the atmospheric dispersion numerical modeling.In March 2011,due to the massive 9.0 earthquakes and ensuing tsunami that struck off the northern coast of the island of Honshu,the Fukushima Nuclear Plant I had the substantial leak of radioactive materials into surrounding environment and atmosphere.To aim at the global dispersion modeling of atmospheric radionuclides from Fukushima Nuclear Accident,this paper presents two approaches of atmospheric dispersion forecasting:ensemble dispersion modeling(EDM) and deterministic dispersion modeling(DDM),conducts the globally dispersion modeling cases for Fukushima nuclear accident,and analyzes and evaluates the simulation results using observation data.In this paper,EDM includes three different perturbation methods:meteorological perturbation method,turbulence perturbation method,and physical parameterization ensemble forecasting method.The simulation results show that the trajectories from EDM have a better performance,which is in better agreement with the atmospheric circulation and observation data; the spread from DDM is slower and not as far as EDM.Additionally,the results from EDM display a better performance in the modeling of transport from Japan to China East Sea on April 4.The reasons for these results are:the techniques of MET and TUR are performed by adding perturbations on mean wind and turbulent velocity,respectively; the various different flow fields will result in far spreading in horizontal and the simulation results closer to observation; PHY is performed by using different diffusion physical parameterizations and produces the perturbations on vertical wind,which results the spreading in smaller range and discontinuous in horizontal.Finally,the comparative analysis between modeling results and observation data shows that all cases results are in good agreement with trends of obse
采用新一代on-line空气质量模式Weather Research Forecasting Model with Chemistry(WRF-chem)模拟探究中国气溶胶污染对4个季节净辐射量、温度、大气边界层高度和降水量等气象要素的影响.模型验证结果表明:WRF-chem可反映出我国四季气象条件和PM_(10)的浓度分布特点.由于气溶胶气候效应作用,受气溶胶污染影响,2006年1、4、7、10月月均净辐射量下降约10 W/m^2,月均温度下降0.15℃,月均PBL高度下降15 m.月均净辐射量、温度、PBL高度显著下降的区域集中在京津冀、长江三角洲、珠江三角洲、山东半岛、武汉及周边、长株潭和成都-重庆等气溶胶浓度较高的地区,秋季下降量最高,春季最低.与其他气象要素不同,气溶胶污染使得降水量有所增加.通过与美洲、欧洲等地区的相关研究对比发现,由于我国气溶胶污染较为严重,气溶胶对气象要素的影响更加显著.