Al-doped ZnO(AZO) thin films were grown on c-sapphire substrates by laser ablation under different oxygen partial pressures(P_(O2)).The effect of P_(O2) on the crystal structure,preferred orientation as well as the electrical and optical properties of the films was investigated.The structure characterizations indicated that the as-grown films were single-phased with a wurtzite ZnO structure,showing a significant c-axis orientation.The films were well crystallized and exhibited better crystallinity and denser texture when deposited at higher P_(O2).At the optimum oxygen partial pressures of 10- 15 Pa,the AZO thin films were epitaxially grown on c-sapphire substrates with the(0001) plane parallel to the substrate surface,i e,the epitaxial relationship was AZO(000 1) // A1_2O_3(000 1).With increasing P_(O2),the value of Hall carrier mobility was increased remarkably while that of carrier concentration was decreased slightly,which led to an enhancement in electrical conductivity of the AZO thin films.All the films were highly transparent with an optical transmittance higher than 85%.
Using high aluminum refractory material as substrate at 1400℃, we studied the connections between several oxides such as Fe203, MnOv CuO, and the formation of defects such as coating crack, exfoliation, blistering, erosion, and fading away appeared in the application of high temperature infrared radiation coating. Analyses showed that thermal stress formed during the heating process due to the thermal expansion coefficient differential between the coating and the substrate, and volume effect caused by the crystal transferred when the temperature changed, which resulted in the coating crack and exfoliation. The gas produced by the reactions between components and binder or the components themselves during the heating process caused the coating blistering. The EMPA and XRD analyses show that oxides with low melting point in the penetrating area of the substrate may form eutectic with low melting point and produced thermal defects, which leads to the erosion by penetrating to the substrate. The valent changes of Fe2O3 and MnO2 during the heating process cause the volatilization of the oxides or the pulverization of the coatings, resulting in the coating fades away easily at high temperature for a long time.
YE JingLAN HelongWANG ChuanbinLUO GuoqiangZHANG Lianmeng