ZnO micro/nanostructures with various morphologies were grown via hydrothermal etching of Zn foil.Controlling the reaction temperature and time,rod-like,pencil-like,tube-like and flowerlike ZnO micro/nanostructures could be prepared directly on the Zn foil surface at temperatures 100-180℃ with excellent reproducibility.X-ray diffraction patterns indicated that these ZnO micro/nanostructures were hexagonal.Possible mechanisms for the variation of morphology are discussed.Moreover,photoluminescence spectra of the as-grown samples revealed that all of them consist of UV emission band at around 392 nm.
Well-crystalline CeO_2 nanowires were prepared via a surfactant-assisted hydrothermal process.Reaction temperature and reaction time were changed for the determination of optimal synthesis parameters.The as-obtained products were characterized by X-ray diffraction (XRD),high-resolution transmission electron microscopy(HRTEM),and field emission scanning electron microscopy(FESEM).The results show that single crystal CeO_2 nanowires with high yield and good uniformity can be obtained hydrothermally at 180℃for 12 h with the aid of 2.0 g surfactant(polyvinyl pyrrolidone,PVP).The role of PVP was then discussed and a possible growth mechanism was proposed. Moreover,room temperature photoluminescence(PL) spectra were obtained for these CeO2 nanowires,which are believed to be related to the abundant defects in these nanostructures.
Ming-zai WuYan-mei LiuPeng DaiZhao-qi SunXian-song Liu