In the canonical version of evolution by gene duplication, one copy is kept unaltered while the other is free to evolve. This process of evolutionary experimentation can persist for millions of years. Since it is so short lived in comparison to the lifetime of the core genes that make up the majority of most genomes, a substantial fraction of the genome and the transcriptome may—in principle—be attributable to what we will refer to as "evolutionary transients", referring here to both the process and the genes that have gone or are undergoing this process. Using the rice gene set as a test case, we argue that this phenomenon goes a long way towards explaining why there are so many more rice genes than Arabidopsis genes, and why most excess rice genes show low similarity to eudicots.
MicroRNAs are -22 nt long small non-coding RNAs that play important regulatory roles in eukaryotes. The biogenesis and functional processes of microRNAs require the participation of many proteins, of which, the well studied ones are Dicer, Drosha, Argonaute and Exportin 5. To systematically study these four protein families, we screened 11 animal genomes to search for genes encoding above mentioned proteins, and identified some new members for each family. Domain analysis results revealed that most proteins within the same family share identical or similar domains. Alternative spliced transcript variants were found for some proteins. We also examined the expression patterns of these proteins in different human tissues and identified other proteins that could potentially interact with these proteins. These findings provided systematic information on the four key proteins involved in microRNA biogenesis and functional pathways in animals, and will shed light on further functional studies of these proteins.
Here we present an adaptation of NimbleGen 2.1M-probe array sequence capture for whole exome sequencing using the Illumina Genome Analyzer (GA) platform.The protocol involves two-stage library construction.The specificity of exome enrichment was approximately 80% with 95.6% even coverage of the 34 Mb target region at an average sequencing depth of 33-fold.Comparison of our results with whole genome shot-gun resequencing results showed that the exome SNP calls gave only 0.97% false positive and 6.27% false negative variants.Our protocol is also well suited for use with whole genome amplified DNA.The results presented here indicate that there is a promising future for large-scale population genomics and medical studies using a whole exome sequencing approach.
Positive correlation between recombination rate and nucleotide diversity has been observed in a wide variety of eukaryotes on megabase scale. On the basis of genome-wide chicken genetic variation map generated by comparing three domestic breeds with wild ancestor and the positions of markers on the genetic linkage map, we found that SNPs rates were similar for all chromosomes while the recombina-tion rates increased in micro chromosomes. In other words no correlation exists in chromosome size. Nevertheless, when we scanned the genome by calculating the values of each characteristic within non-overlapping windows, instead of single value for each chromosomes, the nucleotide diversity was found to be significantly correlated with the recombination rate (r=0.27, P<0.0005). Furthermore, the significant association not only existed between these two features, but also existed between all 6 pairwise combinations of nucleotide diversity, recombination rate, GC content and average gene length. This co-variation is very meaningful for the studies of sequence evolution.
FANG LinYE JiaLI NingZHANG YongLI SongGangGANE Ka-Shu WONGWANG Jun