角点是数字图像中目标的重要局部特征,提供了目标的低层次视觉特性。将Laplace of Gaussian变换引入到平面曲线,提出了一种基于边缘轮廓的LoG角点检测算子。深入分析LoG变换的几何特征,建立了边缘轮廓曲率和LoG范数间的等价度量关系。角点响应函数被定义为边缘点的LoG变换范数,边缘轮廓上LoG范数的局部极值点被认为是角点。并针对Γ-角点模型和圆周曲线模型,验证了这种定义的合理性。实验结果表明,相比经典角点检测算子,该文算法具有高效、稳定的优点。
流形学习方法可以有效地发现存在于高维图像空间的低维子流形,但是流形学习是一种非监督学习方法,其鉴别能力反而不如传统的维数约简方法,且对人脸图像的光照、姿态等局部变化敏感.针对这两个问题,本文提出一种基于人脸表观流形鉴别分析的识别方法,该方法利用局部二元模式(Local binary pattern,LBP)对人脸图像进行局部特征描述,提取对局部变化不敏感的特征,然后使用有监督的核局部线性嵌入算法(Supervised kernel local linear embedding,SKLLE)对由局部特征构造的全局特征进行维数约简,提取低维鉴别流形特征进行人脸识别.该方法不仅对局部变化不敏感,而且将人脸表观流形和类别信息进行有效的结合,同时对新样本有较好的泛化性.实验结果表明该算法能有效的提高人脸识别的性能.