The metal sintering approach offers a costeffective means for the mass-production of open-cell foams from a range of materials, including high-temperature steel alloys, which offer novel mechanical and acoustic properties. In a separate experimental study, the mechanical properties of open-celled steel alloy (FeCrA1Y) foams have been characterized under uniaxial compression and shear loading. Compared to predictions from established models, a significant knockdown in material properties was observed. This knockdown was attributed to the presence of defects throughout the microstructure that result from the unique fabrication process. In the present paper, the microstructure of sintered FeCrA1Y foams was modeled by using a finite element (FE) model. In particular, microstructural variations were introduced to a base lattice, and the effects on the strength and stiffness calculated. A range of defects identified under scanning electronic microscope (SEM) imaging were considered including broken ligaments, thickness variations, and pore blockages, which are the three primary imperfections observed in sintered foams. The corresponding levels of defect present in the material were subsequently input into the FE model, with the resulting predictions correlating well with experimental data.
An effective single layered finite element (FE) computational model is proposed to predict the structural behavior of lightweight sandwich panels having two dimensional (2D) prismatic or three dimensional (3D) truss cores. Three different types of cellular core topology are considered: pyramidal truss core (3D), Kagome truss core (3D) and corrugated core (2D), representing three kinds of material anisotropy: orthotropic, monoclinic and general anisotropic. A homogenization technique is developed to obtain the homogenized macroscopic stiffness properties of the cellular core. In comparison with the results obtained by using detailed FE model, the single layered computational model can give acceptable predictions for both the static and dynamic behaviors of orthotropic truss core sandwich panels. However, for non-orthotropic 3D truss cores, the predictions are not so well. For both static and dynamic behaviors of a 2D corrugated core sandwich panel, the predictions derived by the single layered computational model is generally acceptable when the size of the unit cell varies within a certain range, with the predictions for moderately strong or strong corrugated cores more accurate than those for weak cores.
Open celled metal foams fabricated through metal sintering are a new class of material that offers novel mechanical and acoustic properties. Previously, polymer foams have been widely used as a means of absorbing acoustic energy. However, the structural applications of these foams are limited. The metal sintering approach offers a costeffective means for the mass-production of open-cell foams from a range of materials, including high-temperature steel alloys. In this first part of two-paper series, the mechanical properties of open-celled steel alloy (FeCrA1Y) foams were characterized under uniaxial compression and shear loading. Compared to predictions from established models, a significant knockdown in material properties was observed. This knockdown was attributed to the presence of defects throu- ghout the microstructure that result from the unique fabrication process. Further in situ tests were carried out in a SEM (scanning electronic microscope) in order to investigate the effects of defects on the properties of the foams. Typically, the onset of plastic yielding was observed to occur at defect locations within the microstructure. At lower relative densities, ligament bending dominates, with the deformation initializing at defects. At higher relative densities, an additional deformation mechanism associated with membrane elements was observed. In the follow-up of this paper, a finite element model will be constructed to quantify the effects of defects on the mechanical performance of the opencell foam.
Skin thermal damage or skin burns are the most commonly encountered type of trauma in civilian and military communities. Besides, advances in laser, microwave and similar technologies have led to recent developments of thermal treatments for disease and damage involving skin tissue, where the objective is to induce thermal damage precisely within targeted tissue structures but without affecting the surrounding, healthy tissue. Further, extended pain sensation induced by thermal damage has also brought great problem for burn patients. Thus, it is of great importance to quantify the thermal damage in skin tissue. In this paper, the available models and experimental methods for quantification of thermal damage in skin tissue are discussed.
In this paper, by capturing the atomic information and reflecting the behaviour governed by the nonlinear potential function, an analytical molecular mechanics approach is proposed. A constitutive relation for single-walled carbon nanotubes (SWCNT's) is established to describe the nonlinear stress-strain curve of SWCNT's and to predict both the elastic properties and breaking strain of SWCNT's during tensile deformation. An analysis based on the virtual internal bond (VIB) model proposed by P. Zhang et al. is also presented for comparison. The results indicate that the proposed molecular mechanics approach is indeed an acceptable analytical method for analyzing the mechanical behavior of SWCNT's.
Fiber reinforced lattice composites are lightweight attractive due to their high specific strength and specific stiffness.In the past 10 years,researchers developed three-dimensional(3D) lattice trusses and two-dimensional (2D) lattice grids by various methods including interlacing, weaving,interlocking,filament winding and molding hot- press.The lattice composites have been applied in the fields of radar cross-section reduction,explosive absorption and heat-resistance. In this paper,topologies of the lattice composites, their manufacturing routes,as well as their mechanical and multifunctional applications,were surveyed.