Transparent conductive graphene films are fabricated by the transfer printing of graphene aqueous dispersion followed by hydrohalic acids and thermal reduction. Results indicate that the graphene film reduced by hydroiodic acid (HI) reduction combined with thermal treatment shows a higher electrical conductivity than that reduced only by thermal treatment at the same transparency. A film with a sheet resistance of - 2400 D./sq at a transparency over 72% is obtained at a typical wavelength of 550 nm.
Band gap, which can be tuned by changing the size of quantum dots (QDs) based on the quantum confinement effect, plays a fundamental role in electrical and optical properties of QDs. However, the tuning of the band gap by changing the size results in a series of intrinsic problems, such as the instability of the extremely small QDs, negative combination with biomolecules because of the large size of QDs, etc. Recently, several new methods have been developed to further study and improve the tuning of the band gap. In this paper, we summarized the recent progress in the fields of tuning the band gap of QDs, including alloyed QDs, core-shell QDs and doped QDs. The review has also prospected the development trend of tuning the band gap as well as their applications.