In this paper, an integrated validation method and process are developed for multivariate dynamic systems. The principal component analysis approach is used to address multivariate correlation and dimensionality reduction, the dynamic time warping and correlation coefficient are used for error assessment, and the subject matter experts (SMEs)’ opinions and principal component analysis coefficients are incorporated to provide the overall rating of the dynamic system. The proposed method and process are successfully demonstrated through a vehicle dynamic system problem.
针对虚拟样机开发环境中不确定多元输出响应动态系统的模型验证问题,提出了基于误差统计分析、统计主元分析(Probabilistic principal component analysis,PPCA)、基于领域专家知识的阈值定义与转化和贝叶斯区间假设检验的不确定性动态系统模型验证方法和流程。概率误差分析方法用于处理物理试验和仿真结果的重复误差,PPCA用于处理多元相关数据和降维,基于领域专家知识的阈值定义与转化用于确定降维数据空间中的阈值区间,贝叶斯区间假设检验通过贝叶斯可信度提供模型验证结果。该方法解决了不确定性多元动态系统验证中的重复误差量化、多元相关数据处理、领域专家知识融合及提供具有明确物理意义和直观的验证结果等关键问题。对某汽车正向碰撞中乘员保护系统的实例研究表明,该方法能有效实现虚拟样机环境下的不确定性动态系统模型验证,并进一步推动数字化仿真模型的改进。