In this paper, the LP(Rn)-boundedness of the commutators generalized by BMO(Rn) function and the singular integral operator T with rough kernel Ω∈ L log+ L(Sn-1)is proved by using the Bony's formula for the paraproduct of two functions.
In this paper we obtain the fundamental solution for a class of weighted BaouendiGrushin type operator L_(p,γ,α)u = ▽_γ·(|▽_γu|^(p-2)ρ~α▽_γu) on R^(m+n )with singularity at the origin,where ▽_γ is the gradient operator defined by ▽_γ =(▽_x,|x|~γ▽_y) and ρ is the distance function.As an application,we get some Hardy type inequalities associated with ▽_γ.
DI Yan-mei JIN Yong-yang SHEN Shou-feng JIANG Li-ya