Some embedding inequalities in Hardy-Sobolev space are proved. Furthermore, by the improved inequalities and the linking theorem, in a new k-order SobolevHardy space, we obtain the existence of sign-changing solutions for the nonlinear elliptic equation {-△(k)u:=-△u-(N-2)2/4u/|x|2-1/4k-1∑im1u/|x|2(ln(i)R/|x|2=f(x,u),x∈Ω,u=0,x∈Ω,where 0∈ΩBa(0)RN,n≥3,ln)i)=6jm1ln(j),and R=ae(k-1),where e(0)=1,e(j)=ee(j=1)for j≥1,ln(1)=ln,ln(j)=lnln(j-1)for j≥2.Besides,positive and negative solutions are obtained by a variant mountain pass theorem.
The Hardy-Sobolev inequality with general weights is established, and it is shown that the constant is optimal. The two weights in this inequality are determined by a Bernoulli equation. In addition, the authors obtain the Hardy-Sobolev inequality with general weights and remainder terms. By choosing special weights, it turns to be many versions of the Hardy-Sobolev inequality and the Caffarelli-Kohn-Nirenberg inequality with remainder terms in the literature.