In order to investigate the alternate operation characteristics of a solar-ground source heat pump system(SGSHPS),various alternate operation modes are put forward and defined.A two-dimensional mathematical model with freezing/melting phase changes is developed for the heat transfer analysis of the soil.Based on the numerical solution of the model,the variation trends of underground soil temperature of the SGSHPS operated in various alternate operation modes are discussed.The results indicate that,for the day-night and short-time interval alternate operation modes without solar energy,the operation time fraction of a solar heat source should be confined to from 50% to 58% when operated in an alternate period of 24 h.Meanwhile,the disadvantages of a natural resumption of soil temperature can be overcome effectively by solar energy filling,and an optimal operation effect can be achieved by integrating the mode of solar energy filling with other alternate modes.In addition,the accuracy of the presented model is verified by the experimental data of borehole wall temperatures.The conclusions can provide a reference for the optimization operation of the SGSHPS.