针对宽带编码脉冲、多输入多输出等新型目标探测体制发展带来的运算量和数据存储需求剧增的问题,根据水下航行器相位编码脉冲回波检测算法的数据级并行特点,提出应用图形处理器(Graphics Processing Unit,GPU)众核处理架构,并从任务分配策略、数据处理流程、GPU硬件资源利用率和存储器访问等角度考虑,设计了算法在GPU上的并行实现框架。利用湖试数据测试了桌面级GPU平台、嵌入式GPU平台与基于多核数字信号处理器(Digital Signal Processor,DSP)的传统航行器信号处理平台的性能,与多核DSP平台相比,嵌入式GPU平台在功耗、运算性能等方面更有优势。研究结果表明采用嵌入式GPU平台可大幅提升每瓦特性能指标并简化系统设计,能满足新型航行器探测系统大数据量、低功耗和实时性的应用需求。
An algorithm for underwater target feature recognition is proposed using its highlights distribution.For an underwater target with large size and slender body,it is assumed that the heading course and the length of the target are both determined by the distribution of its highlights.By supposing that these highlights obey Gaussian mixture distribution,the feature recognition problem can be transformed into a clustering problem.Therefore,using the collinearly constrained expectation maximization algorithm,the clustering centers of these highlights can be calculated and then the estimation of the heading and length of the target can be obtained with high accuracy.The effectiveness of the proposed method is demonstrated using simulations.
LIU YuZHU XiaomengYAN ShefengMA XiaochuanWU Yongqing