Animals are exposed in nature to a variety ofstressors.While stress is generally harmful,mild stress can also be beneficial and contribute to reproduction and survival.We studied the effect of five cold shock events versus a single cold shock and a control group, representing three levels of stress (harsh,mild,and no stress),on behavioral,physiological, and life-history traits of the red flour beetle (Tribolium castaneum,Herbst 1797).Beetles exposed to harsh cold stress were less active than a control group:they moved less and failed more frequently to detect a food patch.Their probability to mate was also lower. Beetle pairs exposed to harsh cold stress frequently failed to reproduce at all,and if reproducing,females laid fewer eggs,which were,as larvae in mid-development,smaller than those in the control group.However,harsh cold stress led to improved female starvation tolerance,probably due to enhanced lipid accumulation.Harsh cold shock also improved tolerance to an additional cold shock compared to the control.Finally,a single cold shock event negatively affected fewer measured response variables than the harsh cold stress, but also enhanced neither starvation tolerance nor tolerance to an additional cold shock. The consequences of a harsher cold stress are thus not solely detrimental but might even enhance survival under stressful conditions.Under benign conditions,nevertheless,harsh stress impedes beetle performance.The harsh stress probably shifted the balance point of the survival-reproduction trade-off,a shift that did not take place following exposure to mild stress.
Visible, near-infrared and shortwave-infrared(VNIR-SWIR) spectroscopy is an efficient approach for predicting soil properties because it reduces the time and cost of analyses. However, its advantages are hampered by the presence of soil moisture, which masks the major spectral absorptions of the soil and distorts the overall spectral shape. Hence, developing a procedure that skips the drying process for soil properties assessment directly from wet soil samples could save invaluable time. The goal of this study was twofold:proposing two approaches, partial least squares(PLS) and nearest neighbor spectral correction(NNSC), for dry spectral prediction and utilizing those spectra to demonstrate the ability to predict soil clay content. For these purposes, we measured 830 samples taken from eight common soil types in Israel that were sampled at 66 different locations. The dry spectrum accuracy was measured using the spectral angle mapper(SAM) and the average sum of deviations squared(ASDS), which resulted in low prediction errors of less than 8% and 14%, respectively. Later, our hypothesis was tested using the predicted dry soil spectra to predict the clay content, which resulted in R^2 of 0.69 and 0.58 in the PLS and NNSC methods, respectively. Finally, our results were compared to those obtained by external parameter orthogonalization(EPO) and direct standardization(DS). This study demonstrates the ability to evaluate the dry spectral fingerprint of a wet soil sample, which can be utilized in various pedological aspects such as soil monitoring, soil classification,and soil properties assessment.
Despite their importance to conservation, reintroductions are still a risky endeavor and tend to fail, highlighting the need for more efficient post-release monitoring techniques. Reintroduced animals are released into unfamiliar novel environ ments and must explore their surroundings to gain knowledge in order to survive. According to theory, knowledge gain should be followed by subsequent changes to the animal's movement behavior, making movement behavior an excellent indicator of reintroduction progress. We aim to conceptually describe a logical process that will enable the inclusion of behavior (in particular, movement behavior) in management decision-making post-reintroductions, and to do so, we provide four basic components that a manager should look for in the behaviors of released animals. The suggested components are release-site fidelity, recurring locations, proximity to other individuals, and individual variation in movement behavior. These components are by no means the only possible ones available to a manager, but they provide an efficient tool to understanding animals' decision-making based on ecological theory; namely, the exploration-exploitation trade-off that released animals go through, and which underlies their behavior. We demonstrate our conceptual approach using data from two ungulate species reintroduced in Israel: the Persian fallow deer Dama mesopotamica and the Arabian oryx Oryx leucoryx [Current Zoology 60 (4): 515-526, 2014] .
I review studies of core collapse supernovae(CCSNe) and similar transient events that attribute major roles to jets in powering most CCSNe and in shaping their ejecta. I start with reviewing the jittering jets explosion mechanism that I take to power most CCSN explosions. Neutrino heating does play a role in boosting the jets. I compare the morphologies of some CCSN remnants to planetary nebulae to conclude that jets and instabilities are behind the shaping of their ejecta. I then discuss CCSNe that are descendants of rapidly rotating collapsing cores that result in fixed-axis jets(with small jittering) that shape bipolar ejecta. A large fraction of the bipolar CCSNe are superluminous supernovae(SLSNe). I conclude that modeling of SLSN light curves and bumps in the light curves must include jets, even when considering energetic magnetars and/or ejecta interaction with the circumstellar matter(CSM). I connect the properties of bipolar CCSNe to common envelope jets supernovae(CEJSNe) where an old neutron star or a black hole spirals-in inside the envelope and then inside the core of a red supergiant. I discuss how jets can shape the pre-explosion CSM, as in Supernova 1987A, and can power pre-explosion outbursts(precursors)in binary system progenitors of CCSNe and CEJSNe. Binary interaction also facilitates the launching of postexplosion jets.
I use recent observations of circumstellar matter(CSM)around type Ia supernovae(SNe Ia)to estimate the fraction of SNe Ia that explode into a planetary nebula(PN)and to suggest a new delay time distribution from the common envelope evolution(CEE)to the SN Ia explosion for SNe Ia that occur shortly after the CEE.Under the assumption that the CSM results from a CEE,I crudely estimate that about 50%of all SNe Ia are SNe Ia inside PNe(SNIPs),and that the explosions of most SNIPs occur within a CEE to explosion delay(CEED)time of less than about ten thousand years.I also estimate that the explosion rate of SNIPs,i.e.,the CEED time distribution,is roughly constant within this timescale of ten thousand years.The short CEED time suggests that a fraction of SNIPs come from the core-degenerate(CD)scenario where the merger of the core with the white dwarf takes place at the end of the CEE.I present my view that the majority of SNIPs come from the CD scenario.I list some further observations that might support or reject my claims,and describe the challenge to theoretical studies to find a process to explain a merger to explosion delay(MED)time of up to ten thousand years or so.A long MED will apply also to the double degenerate scenario.
The geometric phase of light has been demonstrated in various platforms of the linear optical regime, raising interest both for fundamental science as well as applications, such as flat optical elements. Recently, the concept of geometric phases has been extended to nonlinear optics, following advances in engineering both bulk nonlinear photonic crystals and nonlinear metasurfaces. These new technologies offer a great promise of applications for nonlinear manipulation of light. In this review, we cover the recent theoretical and experimental advances in the field of geometric phases accompanying nonlinear frequency conversion. We first consider the case of bulk nonlinear photonic crystals, in which the interaction between propagating waves is quasi-phase-matched, with an engineerable geometric phase accumulated by the light. Nonlinear photonic crystals can offer efficient and robust frequency conversion in both the linearized and fully-nonlinear regimes of interaction, and allow for several applications including adiabatic mode conversion, electromagnetic nonreciprocity and novel topological effects for light. We then cover the rapidly-growing field of nonlinear Pancharatnam-Berry metasurfaces, which allow the simultaneous nonlinear generation and shaping of light by using ultrathin optical elements with subwavelength phase and amplitude resolution. We discuss the macroscopic selection rules that depend on the rotational symmetry of the constituent meta-atoms, the order of the harmonic generations, and the change in circular polarization. Continuous geometric phase gradients allow the steering of light beams and shaping of their spatial modes. More complex designs perform nonlinear imaging and multiplex nonlinear holograms, where the functionality is varied according to the generated harmonic order and polarization. Recent advancements in the fabrication of three dimensional nonlinear photonic crystals, as well as the pursuit of quantum light sources based on nonlinear metasurfaces, offer exciting new possibiliti
Land degradation affects extensive drylands around the world.Due to long-term misuse,the Israeli Sde Zin dryland site has faced severe degradation.The study objective was to assess the feasibility of passive restoration in recovering the site.The study was conducted in four land-units along a preservation-degradation continuum:(1)an area that has not faced anthropogenic disturbances(Ecological land);(2)an area that was proclaimed as a national park in the 1970s(Rehabilitation);(3)an area that was prone,until recently,to moderate anthropogenic pressures(Triangle);and(4)a dirt road that was subjected to long-term off-road traffic(Dirtroad).Soil was sampled and analyzed for its properties.The soil physical quality followed the trend of Ecological land>Rehabilitation>Triangle>Dirtroad.Specifically,high soil salinity in the latter three land-units is attributed to long-term erosional processes that exposed the underlying salic horizons.Herbaceous and shrubby vegetation cover was also monitored.The herbaceous vegetation cover followed the trend of Ecological land(86.4%)>Rehabilitation(40.3%)>Triangle(26.2%)>Dirtroad(2.1%),while the shrubby cover was 2.8%in the Ecological land-unit,and practically zero in the other land-units.It seems that despite the effectiveness of passive restoration in recovering the soil’s physical properties,the recovery of vegetation is limited by the severe soil salinity.
We introduce a multi-step protocol for optical quantum state engineering that performs as "bright quantum scissors," namely truncating an arbitrary input quantum state to have at least a certain number of photons.The protocol exploits single-photon pulses and is based on the effect of single-photon Raman interaction,which is implemented with a single three-level Λ system(e.g., a single atom) Purcell-enhanced by a singlesided cavity. A single step of the protocol realizes the inverse of the bosonic annihilation operator. Multiple iterations of the protocol can be used to deterministically generate a chain of single photons in a W state.Alternatively, upon appropriate heralding, the protocol can be used to generate Fock-state optical pulses.This protocol could serve as a useful and versatile building block for the generation of advanced optical quantum states that are vital for quantum communication, distributed quantum information processing, and all-optical quantum computing.