利用径向基函数的多尺度分析方法可以对地球重力场进行分解,提取出细节的地球物理信息.目前通常采用离散积分法进行解算,但信号分解并重构后,所得信号并不能与原始重力场信号完全符合,分解过程中出现了信号泄露.针对这一现象,本文在最小二乘算法和方差分量估计的基础上,提出了新的在各个尺度上直接解算基函数系数的算法(直接法),有效的减少了重力场分解过程中的信号泄露.以南海地区DTU13重力异常数据为例,分别运用离散积分法和直接法对重力异常进行多尺度分解,结果显示:直接法的5个尺度上的信号泄露误差相对离散积分法减小约39%~79%;直接法总的泄露误差为±1.12 m Gal,明显小于离散积分法的±4.04 m Gal,直接法具有更优的效果.
A three-dimensional density model of the crust and uppermost mantle is determined by the inversion of a set of GOCE gravity and gradients residual anomalies beneath the eastern margin of the Tibetan Plateau and its surrounding areas. In our work, we choose five independent gravity gradients (Txx, Tzz, Txy, Txz, Tyz) to perform density inversion. Objective function is given based on Tikhonov regularization theory. Seismic S-wave velocities play the role of initial constraint for the inversion based on a relationship between density and S-wave velocity. Damped Least Square method is used during the inversion. The final density results offer some insights into understanding the underlying geodynamic processes: (1) Low densities in the margin of the Tibet, along with low wave velocity and resistivity results, yield conversions from soft and weak Tibet to the hard and rigid cratons. (2)The lowest densities are found in the boundary of the plateau, instead of the whole Tibet indicates that the effects of extrusion stress environment in the margin affect the changes of the substance there. The substances and environments conditioning for the earthquake preparations and strong deformation in this transitional zone. (3) Evident low-D anomaly in the upper and middle crust in the Lasha terrane and Songpan-Ganzi terrane illustrated the eastward sub-ducted of southeastern Tibet, which could be accounts for the frequent volcano and earthouakes there.
Monitoring glacier mass balance is crucial to managing water resources and also to understanding climate change for the arid and semi-arid regions of Central Asia. This study extracted the inter-annual oscillations of glacier mass over Central Asia from the first ten principal components(S-PCs) of filtered variability via multichannel singular spectral analysis(MSSA), based on gridded data of glacier mass inferred from Gravity Recovery and Climate Experiment(GRACE) data obtained from July 2002 to March 2015. Two significant cycles of glacier mass balance oscillations were identified. The first cycle with a period of 6.1-year accounted for 54.5% of the total variance and the second with a period of 2.3-year accounted for 4.3%. The 6.1-year oscillation exhibited a stronger variability compared with the 2.3-year oscillation. For the 6.1-year oscillation, the results from lagged cross-correlation function suggested that there were significant correlations between glacier mass balances and precipitation variations with the precipitation variations leading the response of glacier mass balances by 9–16 months.
The Gravity Recovery and Climate Experiment(GRACE) has been measuring temporal and spatial variations of mass redistribution within the Earth system since2002. As large earthquakes cause significant mass changes on and under the Earth's surface,GRACE provides a new means from space to observe mass redistribution due to earthquake deformations. GRACE serves as a good complement to other earthquake measurements because of its extensive spatial coverage and being free from terrestrial restriction. During its over 10 years mission,GRACE has successfully detected seismic gravitational changes of several giant earthquakes,which include the 2004 Sumatra–Andaman earthquake,2010 Maule(Chile) earthquake,and 2011 Tohoku-Oki(Japan) earthquake. In this review,we describe by examples how to process GRACE timevariable gravity data to retrieve seismic signals,and summarize the results of recent studies that apply GRACE observations to detect co- and post-seismic signals and constrain fault slip models and viscous lithospheric structures. We also discuss major problems and give an outlook in this field of GRACE application.