A silica-supported cobalt catalyst was prepared by hydrogen dielectric-barrier dis- charge (H2-DBD) plasma. Compared to thermal hydrogen reduction, H2-DBD plasma treatment can not only fully decompose the cobalt precursor but also partially reduce the cobalt oxides at lower temperature and with less time. The effect of the discharge atmosphere on the property of the plasma-prepared catalyst and the Fischer-Tropsch synthesis activity was studied. The re- sults indicate that H2-DBD plasma treatment is a promising alternative for preparing Co/SiO2 catalysts from the viewpoint of energy savings and efficiency.
Co-based catalysts were prepared by using dielectric-barrier discharge (DBD) plasma as an alternative method to conventional thermal calcination. The characterization results of N2-physisorption, temperature programmed reduction (TPR), transmission electron microscope (TEM), and X-ray diffraction (XRD) indicated that the catalysts prepared by DBD plasma had a higher specific surface area, lower reduction temperature, smaller particle size and higher cobalt dispersion as compared to calcined catalysts. The DBD plasma method can prevent the sintering and aggregation of active particles on the support due to the decreased treatment time (0.5 h) at lower temperature compared to the longer thermal calcination at higher temperature (at 500~C for 5 h). As a result, the catalytic performance of the Fischer-Tropsch synthesis on DBD plasma treated Co/Si02 catalyst showed an enhanced activity, C5+ selectivity and catalytic stability as compared to the conventional thermal calcined Co/SiO2 catalyst.
The effect of calcination condition on the cobalt species and Fischer-Tropsch synthesis (FTS) was studied. It was found that higher calcination temperature resulted in decreased FTS activities because CNTs were consumed by oxidation in air at temperature higher than 230 ℃. Cobalt species went through transformation from Co304 to metallic Co in Ar by autoreduction at temperature over 500℃. The autoreduction route might be Co3O4→CoO→C0 or Co3O4→Co2C→Co. Reduction at temperature higher than 500 ℃ also resulted in decreased FTS activities due to the methanation of CNTs in hydrogen.
Jing LüChengdu HuangSuli BaiYunhui JiangZhenhua Li
Co/SiO2 and zirconium promoted Co/Zr/SiO2 catalysts were prepared using dielectric-barrier discharge (DBD) plasma instead of the conventional thermal calcination method. Fischer-Tropseh Synthesis (FTS) performances of the catalyst were evaluated in a fixed bed reactor. The results indicated that the catalyst treated by DBD plasma shows the higher FTS activity and yield of heavy hydrocarbons as compared with that treated by the conventional thermal calcination method. Increase in CO conversion was unnoticeable on the Co/SiO2 catalyst, but significant on the Co/Zr/SiO2 catalyst, both prepared by DBD plasma. On the other hand, heavy hydrocarbon selectivity and chain growth probability (a value) were enhanced on all the catalysts prepared by the DBD plasma. In order to study the effect of the DBD plasma treatment on the FTS performance, the catalysts were characterized by N2-physisorption, H2-temperature programed reduction (H2-TPR), H2-temperature- programmed desorption (H2-TPD) and oxygen titration, transmission electron microscope (TEM) and X-ray diffraction (XRD). It was proved that, compared with the traditional calcination method, DBD plasma not only could shorten the precursor decomposition time, but also could achieve better cobalt dispersion, smaller Co304 cluster size and more uniform cobalt distribution. However, cobalt reducibility was hindered to some extent in the Co/SiO2 catalyst prepared by DBD plasma, while the zirconium additive prevented significantly the decrease in cobalt reducibility and increased cobalt dispersion as well as the FTS performance.